APPENDIX G
FISHER'S EXACT TEST

1. Fisher's Exact Test (Finney, 1948; Pearson and Hartley, 1962) is a statistical method based on the
hypergeometric probability distribution that can be used to test if the proportion of successes is the same in two
Bernoulli (binomial) populations. When used with the Ceriodaphnia dubia data, it provides a conservative test of
the equality of any two survival proportions assuming only the independence of responses from a Bernoulli
population. Additionally, since it is a conservative test, a pair-wise comparison error rate of 0.05 is suggested rather
that an experiment-wise error rate.

2. The basis for Fisher's Exact Test is a 2x2 contingency table. However, in order to use this table the contingency
table must be arranged in the format shown in Table G.1. From the 2x2 table, set up for the control and the
concentration you wish to compare, you can determine statistical significance by looking up a value in the table
provided later in this section.

TABLE G.1. FORMAT FOR CONTINGENCY TABLE

Number of
Number of
Successes Failures Observations
Row 1 a A-a A
Row 2 b B-b B
Total a+thb [(A+B)-a-b] A+B

3. Arrange the table so that the total number of observations for row one is greater than or equal to the total for row
two (A > B). Categorize a success such that the proportion of successes for row one is greater than or equal to the
proportion of successes for row two (a/A > b/B). For the Ceriodaphnia dubia survival data, a success may be 'alive'
or 'dead', whichever causes a/A > b/B. The test is then conducted by looking up a value in the table of significance
levels of b and comparing it to the b value given in the contingency table. The table of significance levels of b is
Table G.5. Enter Table G.5 in the section for A, subsection for B, and the line for a. If the b value of the
contingency table is equal to or less than the integer in the column headed 0.05 in Table G.5, then the survival
proportion for the effluent concentration is significantly different from the survival proportion for the control. A
dash or absence of entry in Table G.5 indicates that no contingency table in that class is significant.

4. To illustrate Fisher's Exact Test, a set of survival data (Table G.2) from the daphnid, Ceriodaphnia dubia,
survival and reproduction test will be used.

5. For each control and effluent concentration construct a 2x2 contingency table.

6. For the control and effluent concentration of 1% the appropriate contingency table for the test is given in
Table G.3.

297



TABLE G.2. EXAMPLE OF FISHER'S EXACT TEST: CERIODAPHNIA DUBIA MORTALITY DATA

Effluent
Concentration (%) No. Dead Total'
Control 1 9
1 0 10
3 0 10
6 0 10
12 0 10
25 10 10

! Total number of live adults at the beginning of the test.

7. Since 10/10 > 8/9, the category 'alive' is regarded as a success. For A =10, B=9 and, a = 10, under the column
headed 0.05, the value from Table G.5 is b= 5. Since the value of b (b = 8) from the contingency table (Table G.3),
is greater than the value of b (b =5) from Table G.5, the test concludes that the proportion of survival is not
significantly different for the control and 1% effluent.

8. The contingency tables for the combinations of control and effluent concentrations of 3%, 6%, 12% are identical
to Table G.3. The conclusion of no significant difference in the proportion of survival for the control and the level
of effluent would also remain the same.

9. For the combination of control and 25% effluent, the contingency table would be constructed as Table G.4. The
category 'dead’ is regarded as a success, since 10/10 > 1/9. The b value (b = 1) from the contingency table

(Table G.4) is less than the b value (b = 5) from the table of significance levels of b (Table G.5). Thus, the percent
mortality for 25% effluent is significantly greater than the percent mortality for the control. Thus, the NOEC and
LOEC for survival are 12% and 25%, respectively.

TABLE G.3. 2x2 CONTINGENCY TABLE FOR CONTROL AND 1% EFFLUENT

Number of
Number of
Alive Dead Observations
1% Effluent 10 0 10
Control 8 1 9
Total 18 1 19
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Table G.4. 2x2 CONTINGENCY TABLE FOR CONTROL AND 25% EFFLUENT

Number of
Number of
Dead Alive Observations
25% Effluent 10 0 10
Control 1 8 9
Total 11 8 19
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TABLE G.5.  SIGNIFICANT LEVELS OF B: VALUES OF B (LARGE TYPE) AND
CORRESPONDING PROBABILITIES (SMALL TYPE)'

o 0-05 0-025 0-01 0-005 a 0-05 0-025 0-01 0-005
A=8 8 4 038 3 013 2 -003 2 -003
A=3 B=3 31 0-050 E— 7 2 020 2 020 1 005" 0 001
6 1 -020 1 -020 0 -003 0 -003
5 0 -013 0 -013
A=4 B=4 4 1 -014 1 -014 E— E— 4 0 -038
3 4 0 -020 7 8 3 026 2 007 2 007 1 -001
7 2 035 1 -009 1 -009 0 001
A=5 B=5 5 1 -024 1 -024 0 -004 0 -004 6 1 -032 0 -006 0 -006
4 0 -024 1 -024 E— E— 5 0 -019 0 -019
4 5 1 -048 0 -008 0 -008 E— 6 8 2 015 2 015 1 -003 1 -003
4 0 -040 7 1 -016 1 -016 0 -002 0 -002
3 5 0-018 0 -018 E— E— 6 0 -009 0 -009 0 -009
2 5 0 -048 5 0 -028 —
5 8 2 035 1 -007 1 -007 0 001
7 1 -032 0 -00s~ 0 -00s~ 0 -00s~
A=6 B=6 6 2 030 1 -008 1 -008 0 -o01 6 0 -016 0 -016
5 1 -040 0 -o08 0 -008 E— 5 0 -044 —
4 0 -030 4 8 1 -018 1 018 0 -002 0 -002
5 6 1 o15* 0 015" 0 -002 0 -002 71 0010 0 010" e
5 0-013 0-013 E— E— 6 0 -030 — e
4 0 045" 3 8 0 -006 0 -006 0 -006
4 6 1 -033 0 -00s~ 0 -00s~ 0 005~ 7 0 -024 0 -024 —
5 0 -024 0 -024 E— E— 2 8 0 -022 0 -022 —
3 6 0 -o12 0 -o12 E— — | A=9 9 5 041 4 o015 3 005~ 3 005~
5 0 -048 8 3 025 3 025 2 008 1 -002
2 6 0 -036 7 2 028 1 -008 1 -008 0 001
6 1 025 1 025 0 -00s~ 0 -00s~
A=7 B=7 7 3 035 2 010" 1 -002 1 -002 5 0015 0015 —
6 1 -015" 1 -015" 0 -002 0 -002 4 0 -041 — e
5 1 -o10" 0 -o10" E— E— 8 9 4 029 3 -009 3 -009 2 002
4 0 -03s5- 8 3 043 2 013 1 -003 1 -003
6 7 2 021 2 021 1 -00s5” 1 -00s5” 7 2 044 1 012 0 -002 0 -002
6 1 025" 0 -004 0 -004 0 -004 6 1 -036 0 -007 0 -007
5 0 -016 0 -016 E— E— 5 0 -020 0 -020 —
4 0 -040 7 9 3 o019 3 o019 2 005 2 005~
5 7 2 0a5" 1 -o10" 0 -o01 0 -o01 8 2 024 2 024 1 -006 0 001
6 1 045" 0 -008 0 -008 E— 7 1 -020 1 -020 0 -003 0 -003
51 002 6| 0-010 0 010" e
7 1 -024 1 -024 E— 0 -003 5 0 -029 — e
6 0 015" 0 015" 0 -003 E— 6 9 3 044 2 o1 1 -002 1 -002
5 0 045" 8 2 047 1-on 0 001 0 001
7 0 -008 0 -008 0 -008 E— 7 1035 0 -006 0 -006
6 0 -033 6 0-017 0-017 —
7 0 -028 5 0 -042 — —

" The table shows:(1) In bold type, for given a, A and B, the value of b ([a) which is just significant at the probability level

quoted (one-tailed test); and (2) In small type, for given A, B and r=a + b, the exact probability (if there is independence) that
b is equal to or less than the integer shown in bold type. From Pearson and Hartley (1962).
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TABLE G.5. SIGNIFICANT LEVELS OF B: VALUES OF B (LARGE TYPE) AND CORRESPONDING
PROBABILITIES (SMALL TYPE)' (CONTINUED)

Probability Probability
o 0-05 0-025 0-01 0-005 o 0-05 0-025 0-01 0-005
A=9 B=5 9 2 027 1 -00s” 1 -00s” 1 -00s” A=10B=4 10 1 o1 1 o1 0 -001 0 -001
8 1023 1 023 0 -003 0 003 9 1 -0 0 005" 0 005" 0 005"
7 0- 0 10" —_— 0- 0 015" —_— —_—
6 0 -028 —_— —_— 7 0- o o o
4 9 1 -014 1 014 0 -001 0 -001 3 10 1 -038 0 -003 0 -003 0 -003
8 0 007 0 007 0 007 9 0 -014 0 014 E— e
7 0 -021 0 -021 8 0- e E
6 0 040 _ 0 -00s _ 2 10 0- 0 015" _— _—
3 9 1. 0 005 0 005 0 005~ 9 0- o o e
8 0 018 0 018 —_
7 0-
2 9 0 018 0 -o18 —_— A=11B=11 11 7- 6 -018 5 -006 4 002
10 5 032 4 o2 3 004 3 004
9 4 040 3 015 2 004 2 004
A=10B=10 10 6 -043 5 016 4 005" 3 002 8 3043 2 0157 1 -004 1 -004
9 4 029 3 0107 3 .10 2 -003 7 2 040 1 -012 0 -002 0 -002
8 3. 2 012 1 -003 1 -003 6 1 -032 0 -006 0 -006 o
7 2. 1 0107 1 0107 0 -002 5 0 018 0 018 E— e
6 1 020 0 005" 0 005" 4 0- — — —
5 0 -016 0 -o16 10 11 6- 5 012 4 004 4 004
4 0 -043 —_— e e 10 4 021 4 021 3 007 2 002
9 10 5 033 4 on 3 003 3 003 9 3 024 3 024 2 007 1 -002
9 4. 3017 2 -005” 2 -005” 8 2 023 2 023 1 -006 0 001
8 2 o019 2 019 1 -004 1 -004 7 1-017 1 -017 0 -003 0 -003
7 1- 1 015 0 -002 0 -002 6 1 -043 0 -009 0 -009 E—
6 1 040 0 -008 0 -008 5 0 -023 0 023 E— e
5 0022 0 -022 9 11 5 026 4 008 4 008 3 -002
8 10 4 023 4 023 3 007 2 -002 10 4 038 3012 2 -003 2 -003
9 3 032 2 009 2 009 1 -002 9 3 040 2 12 1 -003 1 -003
8 2 031 1 -008 1 -008 0 -001 8 2. 1 -009 1 -009 0 001
7 1 -023 1 -023 0 -004 0 -004 7 1- 1 025 0 -004 0 -004
6 0 o1t 0 -1t —_— 6 0 -012 0 012 o o
5 0 029 e e 5 0 -030 E— E— E—
7 10 3. 3 015 2 003 2 003 8 11 4 018 4 018 3 00s” 3 00s”
9 2 018 2 018 1 -004 1 -004 10 3 024 3 024 2 -006 1 -001
8 1-013 1-013 0 -002 0 -002 9 2 022 2 022 1 -005” 1 -005”
7 1 -036 0 -006 0 -006 —_— 8 1- 1015 0 -002 0 002
6 0 017 0 017 e 7 1 -037 0 007 0 007 E—
5 0 -041 6 0-017 0 -017 e e
6 10 3 .036 2 008 2 008 1 -001 5 0 -040 o o o
9 2 036 1 -008 1 -008 0 -001 7 11 4 043 3 on 2 002 2 002
8 1 024 1 024 0 003 0 003 10 3 047 2 013 1 002 1 -002
7 0- 0 10" 9 2 039 1 -000 1 -000 0 001
6 0 -026 —_— —_— 8 1- 1 -025° 0 -004 0 -004
5 10 | 2.2 2 02 1 -004 1 -004 7 0- 0 010" —_— —_—
9 1017 1017 0 -002 0 -002 6 0- 0 -025° E— e
8 l- 0 -007 0 -007 e 6 11 3. 2 006 2 006 1 001
7 0- 0 -019 — — 10 2. 1 005" 1 005" 0 -001
6 0. 9 1. 1 .018 0 -002 0 -002
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TABLE G.5.  SIGNIFICANT LEVELS OF B: VALUES OF B (LARGE TYPE) AND CORRESPONDING
PROBABILITIES (SMALL TYPE)' (CONTINUED)

o Probability o Probability
0-05 0-025 0-01 0-005 0-05 0-025 0-01 0-005
A=11B=6 8 1043 0 -007 0 -007 —_— A=12B=9 7 1037 0 -007 0 -007
7 0-017 0-017 —_— —_— 6 0-017 0-017 —_— —_—
6 0037 — — — 5 0 -039 —_— —_—
5 11 2018 2018 1 -003 1 -003 8 12 5 010 4014 3 004 3 004
10 1.3 1.3 0 01 0 01 11 308 308 2 004 2 004
9 1 -036 0 -00s~ 0 -00s~ 0 -00s~ 10 2 15" 2 15" 1 -003 1 -003
8 0013 0013 — — 9 2 040 1 0107 1 0107 0 01
7 0 -020 —_— —_— —_— 8 105 105 0 -004 0 -004
4 11 1 009 1 009 1 009 0 001 7 0 010" 0 010" —_—
10 1 033 0 004 0 004 0 004 6 0 024 0 024 —_ —_
9 0-on1 0-on1 — — 7 12 4 036 3 009 3 009 2 002
8 0 -026 —_— —_— —_— 11 3 03 20107 20107 1 002
3 11 1033 0 -003 0 -003 0 -003 10 2 .02 1 006 1 006 0 01
10 0-o11 0-o11 —_— —_— 9 1.7 1.7 0 -002 0 -002
9 0027 — — — 8 1 040 0 -007 0 -007
2 11 0013 0013 —_— —_— 7 0016 0016 —_— —_—
10 0 038 — — — 6 0 034 —_— —_—
6 12 3057 3057 2 005~ 2 005~
11 2.m 2.m 1 004 1 004
A=12B=12 12 8 047 7 010 6 -007 5 002 10 13 13 0 -002 0 -002
11 6 034 5014 4 005° 4 005° 9 1032 0 005~ 0 005~ 0 005~
10 5045 4 o1 3 006 2 002 8 0-o11 0-o11 —_— —_—
9 4 050" 300 2 006 1 001 7 0 025 0 025 —_—
8 3 0507 2018 1 -00s” 1 -00s” 6 0 -0s0” —_— —_— —_—
7 2 045 1014 0 -002 0 -002 5 12 2015 2015 1 002 1 002
6 1 034 0 -007 0 -007 —_— 11 10107 10107 10107 0 -001
5 0019 0019 — — 10 1 08 0 -003 0 -003 0 -003
4 0 -047 —_— —_— —_— 9 0 -009 0 -009 0 -009 —_—
11 12 7 037 6014 5 005~ 5 005~ 8 0 020 0 020 —_—
11 5 024 5 024 4 o08 3 002 7 0 041 — — I
10 4 029 3 010" 2 003 2 003 4 12 2 050 1 007 1 007 0 01
9 3 030 2 000 2 000 1 -002 11 107 0 -003 0 -003 0 -003
8 2 .06 1 007 1 007 0 01 10 0 -008 0 -008 0 -008
7 1 -0 1 -0 0 -003 0 -003 9 0019 0019 —_— —_—
6 1 045 0 -009 0 -009 — 8 0 038 —_— —_—
5 0024 0024 —_— —_— 3 12 1 -0 0 -002 0 -002 0 -002
10 12 6 029 5010 50107 4 003 11 0 -009 0 -009 0 -009
11 5043 4 015" 3 005 3 005 10 002 002 —_— —_—
10 4 0a8 3017 2 005" 2 005" 9 0044 —_— —_—
9 3 046 2015 1 -004 1 004 2 12 0-o11 0-o11 —_— —_—
8 2 038 1 010" 0 -002 0 -002 11 0033 —_— —_—
7 1 -0 0 -00s~ 0 -00s~ 0 -0s-
6 0012 0012 — —
5 0 -030 e e e A=13 B=13 13 9 048 8 020 7 007 6 -003
9 12 5o 5o 4 006 3002 12 7 -037 6 015" 5 006 4 002
11 4 029 3 000 3 000 2 002 11 6 -048 5o 4 008 3 o0
10 309 2 08 2 08 1 002 10 4 04 4 04 3 08 2 002
9 2.0 2.0 106 00 9 3o 3o 2 -008 1 -002
8 1016 1016 0 -002 0 -002 8 2.0 2.0 1 006 0 01
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TABLEG.5. SIGNIFICANTLEVELS OF B: VALUES OF B(LARGE TYPE) AND CORRESPONDING
PROBABILITIES (SMALL TYPE)' (CONTINUED)

Probability Probability
o 0-05 0-025 0-01 0-005 o 0-05 0-025 0-01 0-005
A=13B=13 7 2 048 1 015+ 0 003 0 -003 A=13 B=7 11 2 022 2 02 1 004 1 -004
6 1 -037 0 -007 0 -007 10 1 -012 1 -012 0 -002 0 -002
5 0 -020 0 -020 —_— 9 1 -020 0 -004 0 -004 0 -004
4 0 -048 —_— e 8 0 -o10+ 0 -o10+ e e
12 1 8 039 7 -o1s- 6 005+ 5 002 7 0 022 0 -022 — e
1 6 -027 5 -o10- 5 -ot0- 4 003 6 0 -044 E— e e
1 5 033 4 o013 3 004 3 004 6 13 3 021 3 021 2 -004 2 -004
1 4 036 3013 2 004 2 004 12 2 017 2 017 1 -003 1 -003
9 3 034 2 o1 1 -003 1 -003 11 2 046 1 -o10- 1 -010- 0 001
8 2 029 1 -008 1 -008 0 -o01 10 1 -024 1 -024 0 -003 0 -003
7 1 -020 1 -020 0 -004 0 -004 9 1 -0s0- 0 -008 0 -008 e
6 1 -046 0 -010- 0 -o10- e 8 0 -017 0 -017 E— E—
5 0 024 0 024 e e 7 0 034 E— e E—
11 1 7 -031 6 -o11 5 -003 5 -003 5 13 2 012 2 012 1 -002 1 -002
1 6 -048 5018 4 006 3 002 12 2 044 1 -008 1 -008 0 001
1 4 021 4 021 3 007 2 -002 11 1 -022 1 -022 0 -002 0 -002
1 3 021 3 021 2 006 1 o0 10 1 047 0 -007 0 007 —
9 3 -0s0- 2 017 1 -004 1 -004 9 0 -o15- 0 -o15- e e
8 2 -040 1 -on 0 -002 0 -002 8 0 -029 o e e
7 1 027 0 -00s- 0 -00s- 0 -00s- 4 13 2 044 1 -006 1 -006 0 -000
6 0013 0013 _— _— 12 1022 1 022 0 002 0 002
0 -030 11 0 -006 0 -006 0 -006 e
10 1 6 -024 6 -024 5 -007 4 002 10 0 -o15- 0 -o15- e e
1 5 -03s- 4 012 3 003 3 003 9 0 -029 e e e
1 4 .37 3012 2 003 2 003 3 13 1 025 1 -025 0 002 0 002
1 3 033 2 -o10+ 1 -002 1 -002 12 0 -007 0 -007 0 -007 e
9 2 026 1 -006 1 -006 0 -o01 11 0 -o18 0 -018 e e
8 1017 1 -017 0 -003 0 -003 10 0 -036 e e e
7 1 -038 0 007 0 007 e 2 13 0 -o10- 0 -o10- 0 -010- —
6 0 -017 0017 12 0 -029 E— e e
5 0 -038 —_—
9 1 5017 5017 4 o0s- 4 _00s-
1 4 .03 4 023 3 007 2 01 A=14 14 10 -049 9 020 8 -008 7 003
1 3 .02 3 .02 2 -006 1 001 13 8 -038 7 016 6 -006 5 -002
1 2 o017 2 017 1 -004 1 -004 12 6 -023 6 -023 5 -009 4 003
9 2 040 1 -o10+ 0 001 0 001 11 5 027 4 on 3 -004 3 -004
8 1 -025- 1 -02s- 0 004 0 004 10 4 028 3o 2 003 2 003
7 0010+ 0 010+ —_— —_— 9 3 027 2 -009 2 -009 1 -002
6 0 -023 0 -023 —_— 8 2 023 2 023 1 -006 0 001
5 0 -049 —_— —_— 7 1 -016 1 -016 0 -003 0 -003
8 1 5 042 4 012 3 003 3 003 6 1 -038 0 -008 0 -008 —
1 4 047 3 014 2 -003 2 -003 5 -020 0 -020 e e
1 3 041 2 o1 1 -002 1 -002 4 0 -049 o e e
1 2 020 1 -007 1 -007 0 -001 13 14 9 041 8 -016 7 -006 6 -002
9 1017 1017 0 -002 0 -002 13 7 029 6 o011 5 -004 5 -004
8 1 -037 0 -006 0 -006 12 6 -037 5 o015+ 4 005+ 3 002
7 0 -o15- 0 -015- —_— 11 5 041 4 017 3 -006 2 001
6 0 032 10 4 a1 3 .16 2 00s- 2 00s-
7 1 4 031 3 007 3 007 2 01 9 3 038 2 013 1 003 1 003
1 3 031 2 -007 2 -007 1 -001 8 2 -031 1 -009 1 -009 0 001
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TABLE G.5.  SIGNIFICANT LEVELS OF B: VALUES OF B (LARGE TYPE) AND CORRESPONDING
PROBABILITIES (SMALL TYPE)' (CONTINUED)

Probability Probability
a 0-05 0-025 0-01 0-005 o 0-05 0-025 0-01 0-005
A=14 7 1 -021 1 -021 0 -004 0 -004 A=14 B=7 14 4 026 3 006 3 006 2 001
6 1 -048 0 -010+ e e 13 3 025 2 -006 2 -006 1 -001
5 0 -025- 0 -025- e e 12 2 017 2 017 1 -003 1 -003
12 1 8 033 7 -o12 6 -004 6 -004 11 2 s 1 -000 1 -000 0 -0t
1 6 -021 6 -021 5 -007 4 002 10 1 021 1 -021 0 -003 0 -003
1 5 -0254 4 009 4 009 3 003 9 1 043 0 -007 0 -007 E—
1 4 026 3 009 3 009 2 002 8 0 -o015- 0 -o15- —_— —_—
1 3 024 3 024 2 007 1 -002 7 0 -030 e _— _—
9 2 o019 2 o019 1 -00s- 1 -00s- 6 14 3 018 3 018 2 003 2 003
8 2 42 1 012 0 -002 0 -002 13 2 014 2 014 1 -002 1 -002
7 1 -028 0 -005+ 0 -005+ e 12 2 037 1 -007 1 -007 0 -o01
6 0 013 0 013 e o 11 1 018 1 018 0 -002 0 -002
5 0 -030 — — — 10 1 -038 0 005+ 0 005+ R
11 1 7 -026 6 -009 6 -009 5 003 9 0012 0012 E— —_—
1 6 -030 5 o014 4 004 4 004 8 0 -024 0 -024 —_— —_—
1 5 043 4 16 3 -00s- 3 -00s- 7 0 -044 e _— _—
1 4 a2 3 o15- 2 004 2 004 5 14 2 o010+ 2 010+ 1 -001 1 -001
1 3 036 2 on 1 -003 1 -003 13 2 037 1 -006 1 -006 0 -o01
9 2 027 1 -007 1 -007 0 -001 12 1017 1017 0 -002 0 -002
8 1017 1017 0 -003 0 -003 11 1 -038 0 -00s- 0 -00s- 0 -00s-
7 1 -03s 0 007 0 007 _— 10 0 -on 0 -o11 —_— —_—
6 0 -017 0 -017 e e 9 0 -022 0 -022 —_— —_—
5 0 -038 e e —_— 8 0 -040 —_— —_— —_—
10 1 6 -020 6 -020 5 006 4 002 4 14 2 039 1 -00s- 1 -00s- 1 -00s-
1 5 -028 4 009 4 009 3 002 13 1 -019 1 -010 0 -002 0 -002
1 4 .28 3 009 3 009 2 002 12 1 044 0 -00s- 0 -00s- 0 -00s-
1 3 024 3 024 2 007 1 -o001 11 0 -on 0 -on1 —_— —_—
1 2 o018 2 o018 1 -004 1 -004 10 0 -023 0 -023 — —
9 2 040 1 -on 0 -002 0 -002 9 0 -0s1 e —_— —_—
8 1 -024 1 -024 0 -004 0 -004 3 14 1 -022 1 -022 0 -o01 0 -o01
7 0 -o10- 0 -o10- 0 -o10- e 13 0 -006 0 -006 0 -006 —_—
6 0 022 0 022 e o 12 0 -o15- 0 -o15- — —
5 0 047 —_— —_— 11 0 -020 e —_— —_—
9 1 6 -047 5014 4 004 4 004 2 14 0 -008 0 -008 0 -008 E—
1 4 o018 4 o018 3 -00s- 3 -00s- 13 0 -025 0 025 —_— —_—
1 3017 3017 2 004 2 004 12 0 -050 — — —
1 3 o4 2 012 1 -002 1 -002
1 2 029 1 -007 1 -007 0 -001
9 1 -017 1 -017 0 -002 0 -002
8 1 -036 0 -006 0 -006 e A=15B=15 15 11 -0s0- 10 -021 9 -008 8 -003
7 0 014 0 014 —_— —_— 14 9 -040 8 018 7 007 6 -003
6 0 -030 e e e 13 7 025+ 6 010+ 5 -004 5 -004
8 1 5 -036 4 -o10- 4 -o10- 3 002 12 6 -030 5013 4 _00s- 4 _00s-
1 4 039 3 on 2 002 2 002 11 5 033 4 013 3 005 3 -00s-
1 3 032 2 008 2 008 1 -001 10 4 033 3013 2 004 2 004
1 2 02 2 02 1 -00s- 1 -00s- 9 3 030 2 10+ 1 -003 1 -003
1 2 048 1 -012 0 -002 0 -002 8 2 25t 1 -007 1 -007 0 -o01
9 1 -026 0 -004 0 -004 0 -004 7 1 018 1 018 0 -003 0 -003
8 0 -009 0 -009 0 -009 —_— 6 1 -040 0 -008 0 -008 —_—
7 0 -020 0 -020 e e 5 0 -021 0012 E— —_—
6 0 -040 — — — 4 0 -0s0- — — —
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TABLE G.5.

SIGNIFICANT LEVELS OF B: VALUES OF B (LARGE TYPE) AND
CORRESPONDING PROBABILITIES (SMALL TYPE)' (CONTINUED)

Probability Probability
¢ 0-05 0-025 0-01 0-005 ¢ 0-05 0-025 0-01 0-005
A=15B=14 15 10 -042 9 017 8 -006 7 -002 A=15B=9 13 4 o002 3013 2 003 2 003
14 8 031 7013 6 -00s- 6 -00s- 12 R 2 009 2 009 1 -002
13 7 041 6 -017 5 -007 4 002 11 2 .21 2 .21 1 -00s- 1 -00s-
12 6 -046 5 020 4 007 3 002 10 2 -045- 1 -ont 0 -002 0 -002
11 S o8 4 020 3 007 2 -002 9 1 024 1 024 0 -004 0 -004
10 4 046 3018 2 -006 1 -001 8 1 048 0 -009 0 -009 _—
9 3 041 2 014 1 -004 1 -004 7 0019 0 -019 —_— —_—
8 2 033 1 -009 1 -009 0 -001 6 0 -037 e e e
7 1 .02 1-022 0 -004 0 -004 8 15 5032 4 -008 4 -008 3 002
6 1 -040 0 -ont —_— 14 4 033 3 009 3 009 2 002
5 0 025t e e —_— 13 3 .06 2 -006 2 -006 1 -001
13 15 9 -035- 8 013 7 -00s- 7 -00s- 12 2017 2017 1 -003 1 -003
14 7 023 7 023 6 -009 5 -003 11 2 037 1 -008 1 -008 0 -001
13 6 -020 5 -on 4 -004 4 004 10 1 010 1 010 0 -003 0 -003
12 5 031 4 012 3 004 3 004 9 1 -038 0 -006 0 -006 E—
11 4 030 3 on 2 003 2 003 8 0-013 0-013 e e
10 3 026 2 008 2 008 1 002 7 0 -026 e e
9 2 020 2 020 1 005+ 0 -001 6 0 -0s0- _— —_— —_—
8 2 043 1 013 0 -002 0 -002 7 15 4 023 4 023 3 -00s- 3 -00s-
7 1 -020 0 -00s+ 0 -00s+ —_— 14 301 3021 2 004 2 004
6 0013 0 -013 e 13 2 014 2 014 1 -002 1 -002
5 0 -031 — — — 12 2 032 1 -007 1 -007 0 -001
12 15 8 028 7 -o10- 7 -o10- 6 -003 11 1 -5+ 1 -5+ 0 -002 0 -002
14 7 043 6 -016 5 -006 4 002 10 1 032 0 -00s- 0 -00s- 0 -00s-
13 6 049 S -o19 4 007 3 002 9 0 -o10+ 0 -o10+
12 S 049 4 019 3 -o06 2 002 8 0 -020 0 -020 _— —_—
11 4 045t 3017 2 -005- 2 -00s- 7 0 -038 — —_— —_—
10 3 038 2012 1 -003 1 -003 6 15 3 15t 3 o5t 2 -003 2 -003
9 2 028 1 -007 1 -007 0 -001 14 2 o1t 2 o1t 1 -002 1 -002
8 1 .08 1018 0 -003 0 -003 13 2 031 1 -006 1 -006 0 -001
7 1 -038 0 -007 0 -007 — 12 1 014 1 -014 0 -002 0 -002
6 0-017 0 -017  — e 11 1 020 0 -004 0 -004 0 -004
5 0 -037 e e 10 0 -009 0 -009 0 -009
11 15 7 -022 7 -022 6 -007 5 002 9 0-017 0-017 _— —
14 6 -032 5 on 4 003 4 003 8 0 -032 E— E— —
13 5 034 4 012 3 003 3 003 5 15 2 -009 2 -009 2 -009 1 -001
12 4 032 3 o0t 2 003 2 003 14 2 032 1 -00s- 1 -00s- 1 -00s-
11 3 026 2 008 2 008 1 002 13 1 -014 1 -014 0 -001 0 -001
10 2 019 2 019 1 -004 1 -004 12 1 -031 0 -004 0 -004 0 -004
9 2 040 1-onn 0 -002 0 -002 11 0 -008 0 -008 0 -008 e
8 1 -024 1 -04 0 -004 0 -004 10 0 -016 0 -016 e
7 1 -040 0 -o10- 0 -o10- —_— 9 0 -030 _— —_— _—
6 0 -022 0 -022 E— — 4 15 2 o35t 1 -004 1 -004 1 -004
5 0 -046  —  — — 14 1 -016 1 -016 0 -001 0 -001
10 15 6 -017 6 -017 5 -00s- 5 -00s- 13 1037 0 -004 0 -004 0 -004
14 5 023 5 023 4 007 RS 12 0 -009 0 -009 0 -009 _—
13 4 .02 4 02 3 007 2 001 11 0018 0018 E— E—
12 REOT 3 o8 2 -00s- 2 -00s- 10 0 -033 e e e
11 3 042 2 013 1 -003 1 -003 3 15 1 020 1 020 0 -001 0 -001
10 2 029 1 -007 1 -007 0 001 14 0 -00s- 0 -00s- 0 -00s- 0 -00s-
9 1 -016 0 -016 0 -002 0 -002 13 0 -012 0 -012 — —
8 1 -034 0 -006 0 -006 —_— 12 0 -025- 0 -025- e e
7 0013 1-013 e — 11 0 -043 e —_ —_
6 0 -028 _ _ _ 2 15 0 -007 0 -007 0 -007 _
9 15 6 042 5 o2 4 003 4 -003 14 0 -022 0 -022 — —
14 547 4 015- 3 -004 3 004 13 0 -044 e e e
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APPENDIX H

SINGLE CONCENTRATION TOXICITY TEST - COMPARISON OF CONTROL
WITH 100% EFFLUENT OR RECEIVING WATER

1. To statistically compare a control with one concentration, such as 100% effluent or the instream waste
concentration, a t-test is the recommended analysis. The t-test is based on the assumptions that the observations are
independent and normally distributed and that the variances of the observations are equal between the two groups.

2. Shapiro Wilk's test may be used to test the normality assumption (see Appendix B for details). If the data do not
meet the normality assumption, the nonparametric test, Wilcoxon's Rank Sum Test, may be used to analyze the data.
An example of this test is given in Appendix F. Since a control and one concentration are being compared, the K =
1 section of Table F.5 contains the needed critical values.

3. The F test for equality of variances is used to test the homogeneity of variance assumption. When conducting
the F test, the alternative hypothesis of interest is that the variances are not equal.

4. To make the two-tailed F test at the 0.01 level of significance, put the larger of the two variances in the
numerator of F.

2
F=_L whereSl2 > 522
522

5. Compare F with the 0.005 level of a tabled F value withn, - 1 and n, - 1 degrees of freedom, where n, and n,
are the number of replicates for each of the two groups.

6. A set of Ceriodaphnia dubia reproduction data from an effluent screening test will be used to illustrate the F
test. The raw data, mean and variance for the control and 100% effluent are given in Table H.1.

TABLE H.1. CERIODAPHNIA DUBIA REPRODUCTION DATA FROM AN EFFLUENT SCREENING

TEST
Replicate
1 2 3 4 5 6 7 8 9 10 X S2
Control 36 38 35 35 28 41 37 33 . . 354 14.5
100% Effluent 23 14 21 7 12 17 23 8 18 . 15.9 36.6

7. Since the variability of the 100% effluent is greater than the variability of the control, S* for the 100% effluent
concentration is placed in the numerator of the F statistic and S* for the control is placed in the denominator.

#3661

14.55

8. There are 9 replicates for the effluent concentration and 8 replicates for the control. Thus, the numerator
degrees of freedom is 8 and the denominator degrees of freedom is 7. For a two-tailed test at the 0.01 level of
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significance, the critical F value is obtained from a table of the F distribution (Snedecor and Cochran, 1980). The
critical F value for this test is 8.68. Since 2.52 is not greater than 8.68, the conclusion is that the variances of the
control and 100% effluent are homogeneous.

9. EQUAL VARIANCE T-TEST

9.1 To perform the t-test, calculate the following test statistic:

Y -
;= 171
Sp i+i
n,onm
Where: 3_(1 = Mean for the control
Y, = Mean for the effluent concentration

(n,-1)S 2 +(n,~1)S;

S =
P
n,+n,-2
S} = Estimate of the variance for the control
S2 = Estimate of the variance for the effluent concentration
n, = Number of replicates for the control
n, = Number of replicates for the effluent concentration

9.2 Since we are usually concerned with a decreased response from the control, such as a decrease in survival or a
decrease in reproduction, a one-tailed test is appropriate. Thus, compare the calculated t with a critical t, where the
critical t is at the 5% level of significance with n, + n, - 2 degrees of freedom. If the calculated t exceeds the critical
t, the mean responses are declared different.

9.3 Using the data from Table H.1 to illustrate the t-test, the calculation of t is as follows:

35.4-15.9

t=—"_"-= =782
5.13 l+l
8 9
Where:
5 - \J (8-1)145+(9-D366 _ ¢ 5

(8+9-2)
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9.4 For an 0.05 level of significance test with 15 degrees of freedom the critical t is 1.754 (Note: Table D.5 for K
= 1 includes the critical t values for comparing two groups). Since 7.82 is greater than 1.754, the conclusion is that
the reproduction in the 100% effluent concentration is significantly lower than the control reproduction.

10. UNEQUAL VARIANCE T-TEST

10.1 IftheF test for equality of variance fails, the t-test is still a valid test. However, the denominator of the t statistic
is adjusted as follows:

t =

Where: S_{'l = Mean for the control
3_(2 = Mean for the effluent concentration
S? = Estimate of the variance for the control
S3 = Estimate of the variance for the effluent concentration
n, = Number of replicates for the control

n, = Number of replicates for the effluent concentration

10.2 Additionally, the degrees of freedom for the test are adjusted using the following formula:

o - (n,-1) (n,-1)
(n,~1) C2+(1-C)(n,-1)

Where:

10.3 The modified degrees of freedom is usually not an integer. Common practice is to round down to the nearest

integer.

10.4 The t-test is then conducted as the equal variance t-test. The calculated t is compared to the critical t at the
0.05 significance level with the modified degrees of freedom. If the calculated t exceeds the critical t, the mean

responses are found to be statistically different.
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APPENDIX 1

PROBIT ANALYSIS

1. This program calculates the EC1 and EC50 (or LC1 and LC50), and the associated 95% confidence intervals.

2. The program is written in IBM PC Basic for the IBM compatible PC by Computer Sciences Corporation, 26 W.
Martin Luther King Drive, Cincinnati, OH 45268. A compiled, executable version of the program can be obtained
from EMSL-Cincinnati by sending a written request to EMSL at 3411 Church Street, Cincinnati, OH 45244.

2.1 Data input is illustrated by a set of total mortality data (Figure I.1) from a fathead minnow embryo-larval
survival and teratogenicity test. The program requests the following input:

MRS

Desired output of abbreviated (A) or full (F) output? (Note: only abbreviated output is shown below.)
Output designation (P = printer, D = disk file).

Title for the output.

The number of exposure concentrations.

Toxicant concentration data.

2.2 The program output for the abbreviated output includes the following:

1.

2.

A table of the observed proportion responding and the proportion responding adjusted for the controls

(see Figure 1.2).

The calculated chi-square statistic for heterogeneity and the tabular value. This test is one indicator of
how well the data fit the model. The program will issue a warning when the test indicates that the data
do not fit the model.

Estimated LC1 and LC50 values and associated 95% confidence intervals (see Figure 1.2).
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USEPA PROBIT ANALYSIS PROGRAM

USED FOR CALCULATING LC/EC VALUES
Version 1.5

Do you wish abbreviated (A) or full (F) input/output? A
Output to printer (P) or disk file (D)? P
Title ? Example of Probit Analysis

Number responding in the control group = ? 2
Number of animals exposed in the concurrent control group = ? 20
Number of exposure concentrations, exclusive of controls ? 5

Input data starting with the lowest exposure concentration

Concentration = ? 0.5
Number responding = ? 2
Number exposed = ? 20

Concentration = ? 1.0
Number responding = ? 1
Number exposed = ? 20

Concentration = ? 2.0
Number responding = ? 4
Number exposed = ? 20

Concentration = ? 4.0
Number responding = ? 16
Number exposed = ? 20

Concentration = ? 8.0
Number responding = ? 20

Number exposed = ? 20

Number Number

Number Conc. Resp.  Exposed
1 0.5000 2 20
2 1.0000 1 20
3 2.0000 4 20
4 4.0000 16 20
5 8.0000 20 20

Do you wish to modify your data ? N

The number of control animals which responded = 2
The number of control animals exposed = 20
Do you wish to modify these values ? N

Figure I.1. Sample Data Input for USEPA Probit Analysis program, Version 1.5.
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Example of Probit Analysis

Proportion
Observed Responding
Number Number Proportion  Adjusted for
Conc.  Exposed Resp.  Responding Controls

Control 20 2 0.1000 0.0000
0.5000 20 2 0.1000 0.0174
1.0000 20 1 0.0500 -.0372
2.0000 20 4 0.2000 0.1265
4.0000 20 16 0.8000 0.7816
8.0000 20 20 1.0000 1.0000

Chi - Square for Heterogeneity (calculated) = 0.441
Chi - Square for Heterogeneity
(tabular value at 0.05 level) = 7.815

Example of Probit Analysis

Estimated LC/EC Values and Confidence Limits

Exposure Lower Upper
Point Conc. 95% Confidence  Limits
LC/EC 1.00 1.346 0.453 1.922
LC/EC 50.00 3.018 2.268 3.672

Figure 1.2. USEPA Probit Analysis Program Used for Calculating LC/EC Values, Version 1.5.
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APPENDIX J

SPEARMAN-KARBER METHOD

1. The Spearman-Karber Method is a nonparametric statistical procedure for estimating the LC50 and the
associated 95% confidence interval (Finney, 1978). The Spearman-Karber Method estimates the mean of the
distribution of the log,, of the tolerance. If the log tolerance distribution is symmetric, this estimate of the mean is
equivalent to an estimate of the median of the log tolerance distribution.

2. If the response proportions are not monotonically non-decreasing with increasing concentration (constant or
steadily increasing with concentration), the data must be smoothed. Abbott's procedure is used to "adjust" the
concentration response proportions for mortality occurring in the control replicates.

3. Use of the Spearman-Karber Method is recommended when partial mortalities occur in the test solutions, but the
data do not fit the Probit model.

4. To calculate the LC50 using the Spearman-Karber Method, the following must be true: 1) the smoothed
adjusted proportion mortality for the lowest effluent concentration (not including the control) must be zero, and 2)
the smoothed adjusted proportion mortality for the highest effluent concentration must be one.

5. To calculate the 95% confidence interval for the LC50 estimate, one or more of the smoothed adjusted
proportion mortalities must be between zero and one.

6. The Spearman-Karber Method is illustrated below using a set of mortality data from a Fathead Minnow Larval
Survival and Growth test. These data are listed in Table J.1.

TABLE J.1. EXAMPLE OF SPEARMAN-KARBER METHOD: MORTALITY DATA FROM A
FATHEAD MINNOW LARVAL SURVIVAL AND GROWTH TEST (40 ORGANISMS

PER CONCENTRATION)

Effluent Number of Mortality

Concentration Mortalities Proportion
Control 2 0.05
6.25% 2 0.05
12.5% 0 0.00
25.0% 0 0.00
50.0% 26 0.65
100.0% 40 1.00

7. Let pg, py» ---» Py denote the observed response proportion mortalities for the control and k effluent

concentrations. The first step is to smooth the p; if they do not satisfy p, < p, < ... < p,. The smoothing process
replaces any adjacent p;'s that do not conform to p, < p; < ... < p, with their average. For example, if p; is less than
p;., then:
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s s (p,‘+pl>1)
Piy =P T -

Where: p; = the smoothed observed proportion mortality for effluent concentration i.

7.1 For the data in this example, because the observed mortality proportions for the control and the 6.25% effluent
concentration are greater than the observed response proportions for the 12.5% and 25.0% effluent concentrations,
the responses for these four groups must be averaged:

s s s s _ 0.05+0.05+0.00+0.00 _ 0.10

C o= = = = = = 0.025
Py = P by = D; 4 4

7.2 Since p, = 0.65 is larger than p;3, set p; = 0.65. Similarly, p; = 1.00 is larger than p;, so set ps = 1.00.
Additional smoothing is not necessary. The smoothed observed proportion mortalities are shown in Table J.2.

8. Adjust the smoothed observed proportion mortality in each effluent concentration for mortality in the control
group using Abbott's formula (Finney, 1971). The adjustment takes the form:

Where: pi = (@ -py)/(1-pj)
ps = the smoothed observed proportion mortality for the control
pi = the smoothed observed proportion mortality for effluent concentration i.

8.1 For the data in this example, the data for each effluent concentration must be adjusted for control mortality
using Abbott's formula, as follows:

b pt =t = PrPo _ 0.025-0.025 _ 0.0 _ 4,
A 1-0.025 0975

o Py Py _0.650-0.025 _0.0625 _

; 0.641
1 p; 1-0.025 0975
«_PsPo _1.000-0025 0975 | 0o
T 10025 0975
0

The smoothed, adjusted response proportions for the effluent concentrations are shown in Table J.2. A plot of the
smoothed, adjusted data is shown in Figure J.1.

9. Calculate the log,, of the estimated LC50, m, as follows:

06

i=1 2
Where: pi = the smoothed adjusted proportion mortality at concentration i
X; = thelog,, of concentration i
k = the number of effluent concentrations tested, not including the control.
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9.1 For this example, the log,, of the estimated LC50, m, is calculated as follows:

m= [(0.000 - 0.000) (0.7959 + 1.0969)]/2 +
[(0.000 - 0.000) (1.0969 + 1.3979)]/2 +
[(0.641 - 0.000) (1.3979 + 1.6990)]/2 +
[(1.000 - 0.641) (1.6990 + 2.0000)]/2

= 1.656527

TABLE J.2. EXAMPLE OF SPEARMAN-KARBER METHOD: SMOOTHED, ADJUSTED
MORTALITY DATA FROM A FATHEAD MINNOW LARVAL SURVIVAL AND

GROWTH TEST
Smoothed,
Smoothed Adjusted
Effluent Mortality Mortality Mortality
Concentration Proportion Proportion Proportion
Control 0.05 0.025 0.000
6.25% 0.05 0.025 0.000
12.5% 0.00 0.025 0.000
25.0% 0.00 0.025 0.000
50.0% 0.65 0.650 0.641
100.0% 1.00 1.000 1.000
10. Calculate the estimated variance of m as follows:
Kip (1-pYX,. ,+X, )
V(m) _ Zpl ( Pi )( i+1 1*1)
i=2 4(n,-1)
Where: X, = thelog,, of concentration i
n;, = the number of organisms tested at effluent concentration i
pi = the smoothed adjusted observed proportion mortality at effluent concentration i
k = the number of effluent concentrations tested, not including the control.

10.1  For this example, the estimated variance of m, V(m), is calculated as follows:

V(m) (0.000)(1.000)(1.3979 - 0.7959)%/4(39) +

(0.000)(1.000)(1.6990 - 1.0969)%/4(39) +
(0.641)(0.359)(2.0000 - 1.3979)%4(39)

= 0.00053477
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PROPORTION MORTALITY

X OBSERVED PROPORTION MORTALITY
SMOOTHED PROPORTION MORTALITY
------------- SMOOTHED ADJUSTED PROPORTION MORTALITY

X

0.0 ----

\
0.00

\ \ \ \ !
6.25 12.50 25.00 50.00 100.00
EFFLUENT CONCENTRATION (%)

Figure J.1. Plot of the smoothed, adjusted data for the fathead minnow larval survival and growth test.
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11. Calculate the 95% confidence interval for m:  m=+2.0y/V(m)

11.1 For this example, the 95% confidence interval for m is calculated as follows:

1.656527+24/0.00053477 = (1.610277, 1.702777)

12. The estimated LC50 and a 95% confidence interval for the estimated LC50 can be found by taking base,,
antilogs of the above values.

12.1 For this example, the estimated LC50 is calculated as follows:
LC50 = antilog(m) = antilog(1.656527) = 45.3%.

12.2  The limits of the 95% confidence interval for the estimated LC50 are calculated by taking the antilogs of the
upper and lower limits of the 95% confidence interval for m as follows:

lower limit: antilog(1.610277) = 40.8%

upper limit: antilog(1.702777) = 50.4%

316



APPENDIX K

TRIMMED SPEARMAN-KARBER METHOD

1. The Trimmed Spearman-Karber Method is a modification of the Spearman-Karber Method, a nonparametric
statistical procedure for estimating the LC50 and the associated 95% confidence interval (Hamilton et al, 1977).
Appendix The Trimmed Spearman-Karber Method estimates the trimmed mean of the distribution of the log,, of the
tolerance. If the log tolerance distribution is symmetric, this estimate of the trimmed mean is equivalent to an
estimate of the median of the log tolerance distribution.

2. If the response proportions are not monotonically non-decreasing with increasing concentration (constant or
steadily increasing with concentration), the data must be smoothed. Abbott's procedure is used to "adjust" the

concentration response proportions for mortality occurring in the control replicates.

3. Use of the Trimmed Spearman-Karber Analysis is recommended only when the requirements for the Probit
Method and the Spearman-Karber Method are not met.

4. To calculate the LC50 using the Trimmed Spearman-Karber Method, the smoothed, adjusted, observed
proportion mortalities must bracket 0.5.

5. To calculate the 95% confidence interval for the LC50 estimate, one or more of the smoothed, adjusted, observed
proportion mortalities must be between zero and one.

6. Letp,, pys -, Py denote the observed proportion mortalities for the control and the k effluent concentrations.
The first step is to smooth the p; if they do not satisfy p, < p, < ... < p,. The smoothing process replaces any
adjacent p;'s that do not conform to p, < p, < ... < p,, with their average. For example, if p; is less than p, ; then:
Where: pi.i= pi=(itpu)2

p; = the smoothed observed proportion mortality for effluent concentration 1.

7. Adjust the smoothed observed proportion mortality in each effluent concentration for mortality in the control
group using Abbott's formula (Finney, 1971). The adjustment takes the form:

Where:  pi = (pi-po)/(1-po)
Ps = the smoothed observed proportion mortality for the control
pi = the smoothed observed proportion mortality for effluent concentration i.

8. Calculate the amount of trim to use in the estimation of the LC50 as follows:

Where: Trim max(p{, 1-p})

a —

pi = the smoothed, adjusted proportion mortality for the lowest effluent concentration, exclusive of
the control

pi = the smoothed, adjusted proportion mortality for the highest effluent concentration

k = the number of effluent concentrations, exclusive of the control.

The minimum trim should be calculated for each data set rather than using a fixed amount of trim for each data set.
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9. Due to the intensive nature of the calculation for the estimated LC50 and the calculation of the associated 95%
confidence interval using the Trimmed Spearman-Karber Method, it is recommended that the data be analyzed by
computer.

10. A computer program which estimates the LC50 and associated 95% confidence interval using the Trimmed
Spearman-Karber Method, can be obtained from EMSL-Cincinnati by sending a written request to EMSL, 3411
Church Street, Cincinnati, OH 45244.

11. The Trimmed Spearman-Karber program automatically performs the following functions:

a. Smoothing.

b. Adjustment for mortality in the control.

c. Calculation of the necessary trim.

d. Calculation of the LC50.

e. Calculation of the associated 95% confidence interval.

12. To illustrate the Trimmed Spearman-Karber method using the Trimmed Spearman-Karber computer program, a
set of data from a Fathead Minnow Larval Survival and Growth test will be used. The data are listed in Table K.1.

TABLE K.1. EXAMPLE OF TRIMMED SPEARMAN-KARBER METHOD: MORTALITY DATA
FROM A FATHEAD MINNOW LARVAL SURVIVAL AND GROWTH TEST
(40 ORGANISMS PER CONCENTRATION)

Effluent Number of Mortality
Concentration Mortalities Proportion
%

Control 2 0.05
6.25 0 0.00
12.5 2 0.05
25.0 0 0.00
50.0 0 0.00
100.0 32 0.80

12.1 The program requests the following input (Figure K.1):
a. Output destination (D = disk file, P = printer).
b. Control data.
c. Data for each toxicant concentration.
12.2 The program output includes the following (Figure K.2):
a. A table of the concentrations tested, number of organisms exposed, and mortalities.

b. The amount of trim used in the calculation.
c. The estimated LC50 and the associated 95% confidence interval.
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A:>spearman
TRIMMED SPEARMAN-KARBER METHOD. VERSION 1.5

ENTER DATE OF TEST:

1

ENTER TEST NUMBER:

2

WHAT IS TO BE ESTIMATED?

(ENTER "L" FOR LC50 AND "E" FOR EC50)

L

ENTER TEST SPECIES NAME:

Fathead minnow

ENTER TOXICANT NAME:

Effluent

ENTER UNITS FOR EXPOSURE CONCENTRATION OF TOXICANT:
%

ENTER THE NUMBER OF INDIVIDUALS IN THE CONTROL.:

40

ENTER THE NUMBER OF MORTALITIES IN THE CONTROL.:

2

ENTER THE NUMBER OF CONCENTRATIONS

(NOT INCLUDING THE CONTROL; MAX = 10):

5

ENTER THE 5 EXPOSURE CONCENTRATIONS (IN INCREASING ORDER):
6.25 12.5 25 50 100

ARE THE NUMBER OF INDIVIDUALS AT EACH EXPOSURE CONCENTRATION EQUAL(Y/N)?

y
ENTER THE NUMBER OF INDIVIDUALS AT EACH EXPOSURE CONCENTRATION: 40

ENTER UNITS FOR DURATION OF EXPERIMENT

(ENTER "H" FOR HOURS, "D" FOR DAYS, ETC.):

Days

ENTER DURATION OF TEST:

7

ENTER THE NUMBER OF MORTALITIES AT EACH EXPOSURE CONCENTRATION: 020032

WOULD YOU LIKE THE AUTOMATIC TRIM CALCULATION(Y/N)?
y

Figure K.1. Example input for Trimmed Spearman-Karber Method.
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TRIMMED SPEARMAN-KARBER METHOD. VERSION 1.5

DATE: 1 TEST NUMBER: 2 DURATION: 7 Days
TOXICANT: effluent
SPECIES: fathead minnow

RAW DATA: Concentration Number Mortalities
------- (%) Exposed
.00 40 2
6.25 40 0
12.50 40 2
25.00 40 0
50.00 40 0
100.00 40 32
SPEARMAN-KARBER TRIM: 20.41%
SPEARMAN-KARBER ESTIMATES: LC50: 77.28
95% CONFIDENCE LIMITS
ARE NOT RELIABLE.

NOTE: MORTALITY PROPORTIONS WERE NOT MONOTONICALLY INCREASING.
ADJUSTMENTS WERE MADE PRIOR TO SPEARMAN-KARBER ESTIMATION.

Figure K.2. Example output for Trimmed Spearman-Karber Method.
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APPENDIX L

GRAPHICAL METHOD

1. The Graphical Method is used to calculate the LC50. It is a mathematical procedure which estimates the LC50
by linearly interpolating between points of a plot of observed percent mortality versus the base 10 logarithm (log,,)
of percent effluent concentration. This method does not provide a confidence interval for the LC50 estimate and its
use is only recommended when there are no partial mortalities. The only requirement for the Graphical Method is
that the observed percent mortalities bracket 50%.

2. For an analysis using the Graphical Method the data must first be smoothed and adjusted for mortality in the
control replicates. The procedure for smoothing and adjusting the data is detailed in the following steps.

3. The Graphical Method is illustrated below using a set of mortality data from an Fathead Minnow Larval Survival

and Growth test. These data are listed in Table L.1.

TABLE L.1. EXAMPLE OF GRAPHICAL METHOD: MORTALITY DATA FROM A FATHEAD
MINNOW LARVAL SURVIVAL AND GROWTH TEST (40 ORGANISMS PER

CONCENTRATION)
Effluent Number of Mortality
Concentration Mortalities Proportion
%
Control 2 0.05
6.25 0 0.00
12.5 0 0.00
25.0 0 0.00
50.0 40 1.00
100.0 40 1.00

4. Letpy,py, ---» P denote the observed proportion mortalities for the control and the k effluent concentrations.
The first step is to smooth the p; if they do not satisfy p, < p, < ... < p,. The smoothing process replaces any
adjacent p;'s that do not conform to p, < p, < ... < p, with their average. For example, if p, is less than p, , then:

P = = 04p )2
Where: p; = the smoothed observed proportion mortality for effluent concentration i.

4.1 For the data in this example, because the observed mortality proportions for the 6.25%, 12.5%, and 25.0%
effluent concentrations are less than the observed response proportion for the control, the values for these four
groups must be averaged:

5 5 5 s _ 0.05+0.00+0.00+0.00 0.05
Po =P =Py ~P3 ~ 1 = 2 = 0.0125

4.2 Since p, = ps = 1.00 are larger then 0.0125, set p; = ps = 1.00. Additional smoothing is not necessary. The
smoothed observed proportion mortalities are shown in Table L.2.
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TABLE L.2. EXAMPLE OF GRAPHICAL METHOD: SMOOTHED, ADJUSTED MORTALITY
DATA FROM A FATHEAD MINNOW LARVAL SURVIVAL AND GROWTH TEST

Smoothed,

Smoothed Adjusted

Effluent Mortality Mortality Mortality

Concentration Proportion Proportion Proportion

%

Control 0.05 0.0125 0.00
6.25 0.00 0.0125 0.00
12.5 0.00 0.0125 0.00
25.0 0.00 0.0125 0.00
50.0 1.00 1.0000 1.00
100.0 1.00 1.0000 1.00

5. Adjust the smoothed observed proportion mortality in each effluent concentration for mortality in the control
group using Abbott's formula (Finney, 1971). The adjustment takes the form:

p =@ -py) I(1-py)

Where: p; = the smoothed observed proportion mortality for the control

p; = the smoothed observed proportion mortality for effluent concentration i.

5.1 Because the smoothed observed proportion mortality for the control group is greater than zero, the responses
must be adjusted using Abbott's formula, as follows:

I Pi Py _ 0.0125-0.0125 0.0
A 1 - 0.0125 0.9875

b= i PiPy 10000125 _ 09875 _ | o0
T 1-0.0125 09875

A table of the smoothed, adjusted response proportions for the effluent concentrations are shown in Table L.2.

5.2 Plot the smoothed, adjusted data on 2-cycle semi-log graph paper with the logarithmic axis (the y axis) used for
percent effluent concentration and the linear axis (the x axis) used for observed percent mortality. A plot of the
smoothed, adjusted data is shown in Figure L.1.

6. Locate the two points on the graph which bracket 50% mortality and connect them with a straight line.

7. On the scale for percent effluent concentration, read the value for the point where the plotted line and the 50%
mortality line intersect. This value is the estimated LC50 expressed as a percent effluent concentration.

7.1 For this example, the two points on the graph which bracket the 50% mortality line (0% mortality at 25%

effluent, and 100% mortality at 50% effluent) are connected with a straight line. The point at which the plotted line
intersects the 50% mortality line is the estimated LC50. The estimated LC50 = 35% effluent.
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Figure L.1 Plot of the smoothed adjusted response proportions for fathead minnow, Pimephales promelas, survival data.
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APPENDIX M

LINEAR INTERPOLATION METHOD

1. GENERAL PROCEDURE

1.1 The Linear Interpolation Method is used to calculate a point estimate of the effluent or other toxicant
concentration that causes a given percent reduction (e.g., 25%, 50%, etc.) in the reproduction or growth of the test
organisms (Inhibition Concentration, or IC). The procedure was designed for general applicability in the analysis of
data from short-term chronic toxicity tests, and the generation of an endpoint from a continuous model that allows a
traditional quantitative assessment of the precision of the endpoint, such as confidence limits for the endpoint of a
single test, and a mean and coefficient of variation for the endpoints of multiple tests.

1.2 The Linear Interpolation Method assumes that the responses (1) are monotonically non-increasing, where the
mean response for each higher concentration is less than or equal to the mean response for the previous
concentration, (2) follow a piecewise linear response function, and (3) are from a random, independent, and
representative sample of test data. If the data are not monotonically nonincreasing, they are adjusted by smoothing
(averaging). In cases where the responses at the low toxicant concentrations are much higher than in the controls, the
smoothing process may result in a large upward adjustment in the control mean. Also, no assumption is made about
the distribution of the data except that the data within a group being resampled are independent and identically
distributed.

2. DATA SUMMARY AND PLOTS

2.1 Calculate the mean responses for the control and each toxicant concentration, construct a summary table, and
plot the data.

3. MONOTONICITY

3.1 If the assumption of monotonicity of test results is met, the observed response means (S_Ki) should stay the same
or decrease as the toxicant concentration increases. If the means do not decrease monotonically, the responses are
"smoothed" by averaging (pooling) adjacent means.

3.2 Observed means at each concentration are considered in order of increasing concentration, starting with the
control mean (Y, ). If the mean observed response at the lowest toxicant concentration (Y, ) is equal to or smaller
than the control mean (Y, ), it is used as the response. Ifit is larger than the control mean, it is averaged with the
control, and this average is used for both the control response (M,) and the lowest toxicant concentration response
(M,). This mean is then compared to the mean observed response for the next higher toxicant concentration (Y;).
Again, if the mean observed response for the next higher toxicant concentration is smaller than the mean of the
control and the lowest toxicant concentration, it is used as the response. If it is higher than the mean of the first two,
it is averaged with the first two, and the mean is used as the response for the control and two lowest concentrations of
toxicant. This process is continued for data from the remaining toxicant concentrations. A numerical example of
smoothing the data is provided below. (Note: Unusual patterns in the deviations from monotonicity may require an
additional step of smoothing). WhereY; decrease monotonically, the Y, become M, without smoothing.

4. LINEAR INTERPOLATION METHOD
4.1 The method assumes a linear response from one concentration to the next. Thus, the ICp is estimated by linear
interpolation between two concentrations whose responses bracket the response of interest, the (p) percent reduction

from the control.

4.2 To obtain the estimate, determine the concentrations C, and C,,, which bracket the response M, (1 - p/100),
where M, is the smoothed control mean response and p is the percent reduction in response relative to the control
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response. These calculations can easily be done by hand or with a computer program as described below. The
linear interpolation estimate is calculated as follows:

ICp = C, + [ M, (1 -p/l00) - M, ] GG
(MJ £ 1 MJ)
Where: C, = tested concentration whose observed mean response is greater than M, (1 - p/100).

C,., = tested concentration whose observed mean response is less than M,(1 - p/100).
M, = smoothed mean response for the control.
M; = smoothed mean response for concentration J.
M;,, = smoothed mean response for concentration J + 1.
p = percent reduction in response relative to the control response.
ICp = estimated concentration at which there is a percent reduction from the smoothed mean control

response. The ICp is reported for the test, together with the 95% confidence interval
calculated by the ICPIN.EXE program described below.

4.3 Ifthe C, is the highest concentration tested, the ICp would be specified as greater than C;. If the response at the
lowest concentration tested is used to extrapolate the ICp value, the ICp should be expressed as a less than the lowest
test concentration.

5. CONFIDENCE INTERVALS

5.1 Due to the use of a linear interpolation technique to calculate an estimate of the ICp, standard statistical methods
for calculating confidence intervals are not applicable for the ICp. This limitation is avoided by use a technique
known as the bootstrap method as proposed by Efron (1982) for deriving point estimates and confidence intervals.

5.2 In the Linear Interpolation Method, the smoothed response means are used to obtain the ICp estimate reported
for the test. The bootstrap method is used to obtain the 95% confidence interval for the true mean. In the bootstrap
method, the test data Y}; is randomly resampled with replacement to produce a new set of data Y;;*, that is statistically
equivalent to the original data, but a new and slightly different estimate of the ICp (ICp*) is obtained. This process is
repeated at least 80 times (Marcus and Holtzman, 1988) resulting in multiple "data" sets, each with an associate ICp*
estimate. The distribution of the ICp* estimates derived from the sets of resampled data approximates the sampling
distribution of the ICp estimate. The standard error of the ICp is estimated by the standard deviation of the
individual ICp* estimates. Empirical confidence intervals are derived from the quantiles of the ICp* empirical
distribution. For example, if the test data are resampled a minimum of 80 time, the empirical 2.5% and the 97.5%
confidence limits are approximately the second smallest and second largest ICp* estimates (Marcus and Holtzman,
1988).

5.3 The width of the confidence intervals calculated by the bootstrap method is related to the variability of the data.
When confidence intervals are wide, the reliability of the IC estimate is in question. However, narrow intervals do
not necessarily indicate that the estimate is highly reliable, because of undetected violations of assumptions and the
fact that the confidence limits based on the empirical quantiles of a bootstrap distribution of 80 samples may be
unstable.

5.4 The bootstrapping method of calculating confidence intervals is computationally intensive. For this reason, all

of the calculations associated with determining the confidence intervals for the ICp estimate have been incorporated
into a computer program. Computations are most easily done with a computer program such as the revision of the
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BOOTSTRP program (USEPA, 1988; USEPA, 1989) which is now called "ICPIN" which is described below in
subsection 7.

6. MANUAL CALCULATIONS
6.1 DATA SUMMARY AND PLOTS

6.1.1 The data used in this example are the Ceriodaphnia dubia reproduction data used in the example in Section
13. Table M.1 includes the raw data and the mean reproduction for each concentration. Data are included for all
animals tested regardless of death of the organism. If an animal died during the test without producing young, a zero
is entered. If death occurred after producing young, the number of young produced prior to death is entered. A plot
of the data is provided in Figure M.1.

TABLE M.1. CERIODAPHNIA DUBIA REPRODUCTION DATA

Effluent Concentration (%)

Replicate Control 1.56 3.12 6.25 12.5 25.0
1 27 32 39 27 10 0
2 30 35 30 34 13 0
3 29 32 33 36 7 0
4 31 26 33 34 7 0
5 16 18 36 31 7 0
6 15 29 33 27 10 0
7 18 27 33 33 10 0
8 17 16 27 31 16 0
9 14 35 38 33 12 0
10 27 13 44 31 2 0
Mean (Y;) 224 26.3 34.6 31.7 9.4 0
i 1 2 3 4 5 6

6.2 MONOTONICITY

6.2.1 As can be seen from the plot in Figure M.1, the observed means are not monotonically non-increasing with
respect to concentration. Therefore, the means must be smoothed prior to calculating the IC.

6.2.2 Starting with the control mean Y, =22.4 and Y, = 26.3, we see that Y, <Y, . Calculate the smoothed means:

M, =M, = (Y, + Y,)/2 = 2435
6.2.3 Since Y; = 34.6 is larger than M,, average Y, with the previous concentrations:

6.2.4 Additionally, Y, =31.7 is larger than M,, and is pooled with the first three means. Thus,
M, =M, =M, =M, =( M, + M, + M, + Y, )/4 = 287

326



x* INDIVIDUAL NUMBER OF YOUNG
CONNECTS THE OBSERVED MEAN VALUE

T —— CONNECTS THE SMOOTHED MEAN VALUE
| *
O]
Z
2
O
>-
TR
O
14
Ll
m
=
2
Z
0 \ \ \ \ \
0 1.56 3.12 6.25 12.5 25.00
EFFLUENT CONCENTRATION (%)
Figure M.1. Plot of raw data, observed means, and smoothed means for the daphnid, Ceriodaphnia dubia, reproductive data.
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TABLE M.2. CERIODAPHNIA DUBIA REPRODUCTION MEAN RESPONSE AFTER

SMOOTHING
Effluent Response Smoothed
Concentration Mean (Y,) Mean (M,)
% i (Young/female) (Young/female)
Control 1 22.4 28.75
1.56 2 26.3 28.75
3.12 3 34.6 28.75
6.25 4 31.7 28.75
12.5 5 9.4 9.40
25.0 6 0.0 0.00

6.2.5 Since M, > Y, =9.4, set M5 =9.4. Likewise, M; > Y, = 0 and M, becomes 0. Table M.2 contains the
smoothed means and Figure M.1 gives a plot of the smoothed response curve.

6.3 LINEAR INTERPOLATION

6.3.1 Estimates of the IC25 and IC50 are calculated using the Linear Interpolation Method. A 25% reduction in
reproduction, compared to the controls, would result in a mean reproduction of 21.56 young per adult, where M, (1-
p/100) = 28.75(1-25/100). A 50% reduction in reproduction, compared to the controls, would result in a mean
reproduction of 14.38 young per adult, where M, (1-p/100) = 28.75(1-50/100). Examining the smoothed means and
their associated concentrations (Table M.2), the two effluent concentrations bracketing the reproduction of 21.56
young per adult are C, = 6.25% effluent and C; = 12.5% effluent. The two effluent concentrations bracketing a
response of 14.38 young per adult are also C, = 6.25% effluent and C; = 12.5% effluent.

6.3.2 Using Equation 1 from 4.2, the estimate of the IC25 is calculated as follows:

Cp = C) v [ M, (1~ pr100) — M, ] o1 =)
’ l ! (MJ w1 MJ)
1C25 = 625 + [28.75 (1 - 25/100) - 28.75]-U23 ~ 625)
(9.40 - 28.75)

= 8.57% effluent

6.3.3 Using the equation from section 4.2, the estimate of the IC50 is calculated as follows:

(CJ 1 CJ)
ICp = C,+ [ M, (I - p/100) - M, ]
(MJ + 1 MJ)
IC50 = 625 + [28.75 (1 - 50/100) — 28.75] U2 = 625)
(940 — 28.75)

=10.89% effluent
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6.4 CONFIDENCE INTERVALS

6.4.1 Confidence intervals for the ICp are derived using the bootstrap method. As described above, this method
involves randomly resampling the individual observations and recalculating the ICp at least 80 times, and
determining the mean ICp, standard deviation, and empirical 95% confidence intervals. For this reason, the
confidence intervals are calculated using a computer program called ICPIN. This program is described below and is
available to carry out all the calculations of both the interpolation estimate (ICp) and the confidence intervals.

7. COMPUTER CALCULATIONS

7.1 The computer program, ICPIN, prepared for the Linear Interpolation Method was written in TURBO PASCAL
for IBM compatible PCs. The program (version 2.0) has been modified by Computer Science Corporation, Duluth,
MN with funding provided by the Environmental Research Laboratory, Duluth, MN (Norberg-King, 1993). The
program was originally developed by Battelle Laboratories, Columbus, OH through a government contract supported
by the Environmental Research Laboratory, Duluth, MN (USEPA, 1988). To obtain the program and supporting
documentation, send a written request to EMSL-Cincinnati at 3411 Church Street, Cincinnati, OH 45244.

7.2 The ICPIN.EXE program performs the following functions: 1) it calculates the observed response means (Y,)
(response means); 2) it calculates the standard deviations; 3) checks the responses for monotonicity; 4) calculates
smoothed means (M,) (pooled response means) if necessary; 5) uses the means, M,, to calculate the initial ICp of
choice by linear interpolation; 6) performs a user-specified number of bootstrap resamples between 80 and 1000 (as
multiples of 40); 7) calculates the mean and standard deviation of the bootstrapped ICp estimates; and 8) provides an
original 95% confidence intervals to be used with the initial ICp when the number of replicates per concentration is
over six and provides both original and expanded confidence intervals when the number of replicates per
concentration are less than seven (Norberg-King, 1993).

7.3 For the ICp calculation, up to twelve treatments can be used (which includes the control). There can be up to 40
replicates per concentration, and the program does not require an equal number of replicates per concentration. The
value of p can range from 1% to 99%.

7.4 DATA INPUT

7.4.1 Data is entered directly into the program onscreen. A sample data entry screen in shown in Figure M.2. The
program documentation provides guidance on the entering and analysis of data for the Linear Interpolation Method
(Norberg-King, 1993).

7.4.2 The user selects the ICp estimate desired (e.g., IC25 or IC50) and the number of resamples to be taken for the

bootstrap method of calculating the confidence intervals. The program has the capability of performing any number

of resamples from 80 to 1000 as multiples of 40. However, Marcus and Holtzman (1988) recommend a minimum of
80 resamples for the bootstrap method be used and at least 250 resamples are better (Norberg-King, 1993).

7.5 DATA OUTPUT.
7.5.1 The program output includes the following (Figures M.3 and M.4):

1. A table of the concentration identification, the concentration tested and raw data response for each
replicate and concentration.

2. A table of test concentrations, number of replicates, concentration (units), response means (Y)),
standard deviations for each response mean, and the pooled response means (smoothed means; M;).

3. The linear interpolation estimate of the ICp using the means (M,). Use this value for the ICp estimate.

The mean ICp and standard deviation from the bootstrap resampling.

5. The confidence intervals calculated by the bootstrap method for the ICp. Provides an original 95%
confidence intervals to be used with the initial ICp when the number of replicates per concentration is

b
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over six and provides both original and expanded confidence intervals when the number of replicates
per concentration are less than seven.

7.6 ICPIN program output for the analysis of the Ceriodaphnia dubia reproduction data in Table M.1 is provided in
Figures M.3 and M.4.

7.6.1 When the ICPIN program was used to analyze this set of data, requesting 80 resamples, the estimate of the
IC25 was 8.57% effluent. The empirical 95% confidence intervals for the true mean were 8.30% to 8.85% effluent.

7.6.2 When the ICPIN program was used to analyze this set of data, requesting 80 resamples, the estimate of the

IC50 was 10.89% effluent. The empirical 95% confidence intervals for the true mean were 10.36% to 11.62%
effluent.
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ICp Data Entry/Edit Screen Current File:

Conc. ID 1 2 3 4 5 6
Conc. Tested
Conc. Tested
Response 1
Response 2
Response 3
Response 4
Response 5
Response 6
Response 7
Response 8
Response 9
Response 10
Response 11
Response 12
Response 13
Response 14
Response 15
Response 16
Response 17
Response 18

Response 19

Response 20

F10 for Command Menu Use arrow Keys to Switch Fields
Figure M.2. ICp data entry/edit screen. Twelve concentrating identifications can be used. Data for concentrations

are entered in columns 1 through 6. For concentrations 7 through 12 and responses 21-40 the data is
entered in additional fields of the same screen.
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Conc. ID 1 2 3 4 5 6
Conc. Tested 0 1.56 3.12 6. 25 12.5 25.0
Response 1 27 32 39 27 10 0
Response 2 30 35 30 34 13 0
Response 3 29 32 33 36 7 0
Response 4 31 26 33 34 7 0
Response 5 16 18 36 31 7 0
Response 6 15 29 33 27 10 0
Response 7 18 27 33 33 10 0
Response 8 17 16 27 31 16 0
Response 9 14 35 38 33 12 0
Response 10 27 13 44 31 2 0
*** | nhibition Concentration Percentage Estinmate ***
Toxi cant/ Ef f |l uent :
Test Start Date: app M Test Ending Date:
Test Species: Ceriodaphni a dubia
Test Duration: 7-d
DATA FILE: cerionan.icp
QUTPUT FILE: cerioman.i 25
Conc. Nunber Concentration Response St d. Pool ed

I D Repl i cates % Means Dev. Response Means

1 10 0. 000 22. 400 6. 931 28. 750

2 10 1. 560 26. 300 8. 001 28. 750

3 10 3.120 34. 600 4.835 28. 750

4 10 6. 250 31. 700 2.946 28. 750

5 10 12. 500 9. 400 3. 893 9. 400

6 10 25. 000 0. 000 0. 000 0. 000
The Linear Interpolation Estinmate: 8.5715 Entered P Val ue: 25

Number of Resanpli ngs: 80

The Bootstrap Estimates Man: 8. 6014 Standard Devi ati on: 0. 1467
Original Confidence Linits: Lower : 8. 3040 Upper: 8. 8496
Resanpling tine in Seconds: 2.53 Random Seed: -1652543090

Figure M.3. Example of ICPIN program output for the IC25.
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Conc. ID 1 2 3 4 5 6

Conc. Tested 0 1.56 3.12 6. 25 12.5 25.0
Response 1 27 32 39 27 10 0
Response 2 30 35 30 34 13 0
Response 3 29 32 33 36 7 0
Response 4 31 26 33 34 7 0
Response 5 16 18 36 31 7 0
Response 6 15 29 33 27 10 0
Response 7 18 27 33 33 10 0
Response 8 17 16 27 31 16 0
Response 9 14 35 38 33 12 0
Response 10 27 13 44 31 2 0

*** | nhibition Concentration Percentage Estinmate ***
Toxi cant/ Ef f | uent :

Test Start Date: app M Test Endi ng Date:

Test Species: Ceri odaphni a dubia

Test Duration: 7-d

DATA FI LE: cerioman.icp

QUTPUT FI LE: cerionman.i50

Conc. Nunber Concentration Response St d. Pool ed
ID Repl i cates % Means Dev. Response Means
1 10 0. 000 22.400 6. 931 28. 750
2 10 1. 560 26. 300 8. 001 28. 750
3 10 3.120 34. 600 4.835 28. 750
4 10 6. 250 31. 700 2.946 28. 750
5 10 12. 500 9. 400 3. 893 9. 400
6 10 25. 000 0. 000 0. 000 0. 000
The Linear Interpolation Estimate: 10. 8931 Entered P Val ue: 50

Nunber of Resanplings: 80

The Bootstrap Estimates Mean: 10.9108 Standard Devi ati on: 0. 3267
Oiginal Confidence Limts: Lower : 10. 3618 Upper: 11. 6201
Resanmpling tinme in Seconds: 2.58 Random Seed: 340510286

Figure M.4. Example of ICPIN program output for the IC50.

333



CITED REFERENCES
Bartlett, M.S. 1937. Some examples of statistical methods of research in agriculture and applied biology. J. Royal
Statist. Soc. Suppl. 4:137-183.

Conover, W.J. 1980. Practical Nonparametric Statistics. Second edition. John Wiley and Sons, New York, NY.
pp- 466-467.

Dixon, W.J. and F.J. Massey, Jr. 1983. Introduction to Statistical Analysis. Fourth edition. McGraw Hill, New
York, NY.

Draper, N.R. and J.A. John. 1981. Influential observations and outliers in regression. Technometrics 23:21-26.

Dunnett, C.W. 1955. Multiple comparison procedure for comparing several treatments with a control. J. Amer.
Statist. Assoc. 50: 1096-1121.

Dunnett, C.W. 1964. New table for multiple comparisons with a control. Biometrics 20:482.

Efron, B. 1982. The Jackknife, the Bootstrap, and other resampling plans. CBMS 38, Soc. Industr. Appl. Math.,
Philadelphia, PA.

Finney, D.J. 1948. The Fisher-Yates test of significance in 2X2 contingency tables. Biometrika 35:145-156.
Finney, D.J. 1971. Probit Analysis. Third Edition. Cambridge Press, New York, NY. 668 pp.
Finney, D.J. 1978. Statistical methods in biological assay. 3rd ed. Charles Griffin & Co. Ltd., London. 508 pp.

Hamilton, M.A., R.C. Russo, and R.V. Thurston. 1977. Trimmed Spearman-Karber method for estimating median
lethal concentrations. Environ. Sci. Tech. 11(7):714-719.

Marcus, A.H. and A.P. Holtzman. 1988. A robust statistical method for estimating effects concentrations in
short-term fathead minnow toxicity tests. Manuscript submitted to the Criteria and Standards Division, U.
S. Environmental Protection Agency, by Battelle Washington Environmental Program Office, Washington,
DC, June 1988, under EPA Contract No. 69-03-3534. 39 pp.

Miller, R.G. 1981. Simultaneous statistical inference. Springer-Verlag, New York, NY. 299 pp.

Norberg-King, T.J. 1993. A Linear Interpolation Method for Sublethal Toxicity: The Inhibition Concentration
(ICp) Approach. Version 2.0. National Effluent Toxicity Assessment Center Technical Report 03-93,
Environmental Research Laboratory, Duluth, MN 55804. June 1993.

Pearson, E.S. and T.O. Hartley. 1962. Biometrika tables for statisticians. Vol. 1. Cambridge Univ. Press, England.
pp- 65-70.

Scheffe, H. 1959. The Analysis of Variance. John Wiley and Sons, New York, NY. 477 pp.

Snedecor, G.W. and W.G. Cochran. 1980. Statistical Methods. Seventh Edition. Iowa State University Press,
Ames, Towa. 593 pp.

Steel, R.G.D. 1959. A multiple comparison rank sum test: treatments versus control. Biometrics 15:560-572.

334



Stephens, M.A. 1974. EDF statistics for goodness of fet and some comparisons. J. Amer. Stat. Assoc. (JASA)
69:730-373.

USEPA. 1988. An interpolation estimate for chronic toxicity: The ICp approach. Norberg-King, T.J. Technical
Report 05-88, National Effluent Toxicity Assessment Center, Environmental Research Laboratory, U. S.
Environmental Protection Agency, Duluth, MN 55804.

USEPA. 1989. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to
freshwater organisms. Second edition. Weber, C.1., W.H. Peltier, T.J. Norberg-King, W.B. Horning, II,
F.A. Kessler, J.R. Menkedick, T.W. Neiheisel, P.A. Lewis, D.J. Klemm, Q.H. Pickering, E.L. Robinson,
J.M. Lazorchak, L.J. Wymer, and R.W. Freyberg (eds.). Second Edition. Environmental Monitoring
Systems Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH 45268. EPA/600/4-89/001.

USEPA. 1993. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. Weber,

C.L (ed.). Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency,
Cincinnati, OH 45268. EPA/600/4-90/027F.

335



	APPENDICES
	APPENDIX G - FISHER'S EXACT TEST
	APPENDIX H - SINGLE CONCENTRATION TOXICITY TEST - COMPARISON OF CONTROL WITH 100% EFFLUENT OR RECEIVING WATER
	EQUAL VARIANCE T-TEST
	UNEQUAL VARIANCE T-TEST

	APPENDIX I - PROBIT ANALYSIS
	APPENDIX J - SPEARMAN-KARBER METHOD
	APPENDIX K - TRIMMED SPEARMAN-KARBER METHOD
	APPENDIX L - GRAPHICAL METHOD
	APPENDIX M - LINEAR INTERPOLATION METHOD
	GENERAL PROCEDURE
	DATA SUMMARY AND PLOTS
	MONOTONICITY
	LINEAR INTERPOLATION METHOD
	CONFIDENCE INTERVALS
	MANUAL CALCULATIONS
	COMPUTER CALCULATIONS

	CITED REFERENCES




